Human SLC2A9a and SLC2A9b isoforms mediate electrogenic transport of urate with different characteristics in the presence of hexoses.
نویسندگان
چکیده
Human SLC2A9 (GLUT9) is a novel high-capacity urate transporter belonging to the facilitated glucose transporter family. In the present study, heterologous expression in Xenopus oocytes has allowed us to undertake an in-depth radiotracer flux and electrophysiological study of urate transport mediated by both isoforms of SLC2A9 (a and b). Addition of urate to SLC2A9-producing oocytes generated outward currents, indicating electrogenic transport. Urate transport by SLC2A9 was voltage dependent and independent of the Na(+) transmembrane gradient. Urate-induced outward currents were affected by the extracellular concentration of Cl(-), but there was no evidence for exchange of the two anions. [(14)C]urate flux studies under non-voltage-clamped conditions demonstrated symmetry of influx and efflux, suggesting that SLC2A9 functions in urate efflux driven primarily by the electrochemical gradient of the cell. Urate uptake in the presence of intracellular hexoses showed marked differences between the two isoforms, suggesting functional differences between the two splice variants. Finally, the permeant selectivity of SLC2A9 was examined by testing the ability to transport a panel of radiolabeled purine and pyrimidine nucleobases. SLC2A9 mediated the uptake of adenine in addition to urate, but did not function as a generalized nucleobase transporter. The differential expression pattern of the two isoforms of SLC2A9 in the human kidney's proximal convoluted tubule and its electrogenic transport of urate suggest that these transporters play key roles in the regulation of plasma urate levels and are therefore potentially important participants in hyperuricemia and hypouricemia.
منابع مشابه
I-16: Tubulin Reversible Acetylation – Driving The Moves and The Moves Behind The Drive
Background Asthenozoospermia accounts for almost 50% of the cases of male infertility. Our study investigating phosphoproteins differentially expressed in asthenozoosperm has identified the phosphoproteins relevant to sperm motility and the signature molecules likely to be altered in asthenozoospermia. The 66 phosphoproteins differentially expressed included four alpha tubulin isoforms which we...
متن کاملIdentification of Key Residues for Urate Specific Transport in Human Glucose Transporter 9 (hSLC2A9)
Human glucose transporter 9 (hSLC2A9) is critical in human urate homeostasis, for which very small deviations can lead to chronic or acute metabolic disorders. Human SLC2A9 is unique in that it transports hexoses as well as the organic anion, urate. This ability is in contrast to other homologous sugar transporters such as glucose transporters 1 and 5 (SLC2A1 &SLC2A5) and the xylose transporter...
متن کاملO-12: Tubulin Reversible Acetylation – Driving The Moves and The Moves Behind The Drive
Background Asthenozoospermia accounts for almost 50% of the cases of male infertility. Our study investigating phosphoproteins differentially expressed in asthenozoosperm has identified the phosphoproteins relevant to sperm motility and the signature molecules likely to be altered in asthenozoospermia. The 66 phosphoproteins differentially expressed included four alpha tubulin isoforms which we...
متن کاملMouse GLUT9: evidences for a urate uniporter.
GLUT9 (SLC2A9) is a newly described urate transporter whose function, characteristics, and localization have just started to be elucidated. Some transport properties of human GLUT9 have been studied in the Xenopus laevis oocyte expression system, but the type of transport (uniport, coupled transport system, stoichiometry ... .) is still largely unknown. We used the same experimental system to c...
متن کاملExpression Analysis of RNA-Binding Motif Gene on Y Chromosome (RBMY) Protein Isoforms in Testis Tissue and a Testicular Germ Cell Cancer-Derived Cell Line (NT2)
a key factor in spermatogenesis and disorders associated with this protein have been recognized to be related to male infertility. Although it was suggested that this protein could have different functions during germ cell development, no studies have been conducted to uncover the mechanism of this potential function yet. Here, we analyzed the expression pattern of RBMY protein isoforms in test...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 303 4 شماره
صفحات -
تاریخ انتشار 2012